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14 TOPOLOGICAL METHODSRade T. �Zivaljevi�
INTRODUCTIONA problem is solved or some other goal ahieved by \topologial methods" if in ourarguments we appeal to the \form," the \shape," the \global" rather than \loal"struture of the objet or on�guration spae assoiated with the phenomenon weare interested in. This on�guration spae is typially a manifold or a simpliialomplex. The global properties of the on�guration spae are usually expressed interms of its homology and homotopy groups, whih apture the idea of the higher(dis)onnetivity of a geometri objet and to some extent provide an analysisproperly geometri or linear that expresses loation diretly as algebra expressesmagnitude.1Thesis: Any global e�et that depends on the objet as a whole and that annot beloalized is of homologial nature, and should be amenable to topologial methods.WHERE HAS TOPOLOGY BEEN APPLIED IN COMPUTER SCIENCE?The referenes [ATCS℄ and [BEA+99℄ provide a broad overview of many urrentappliations of algebrai topology in omputer siene and vie versa as well as aninsight into promising new developments. The �eld is undergoing a rapid expansionand the following list should be understood as a sample of some of the main themesor aspets of potential future researh.(a) Algebrai topology (AT) is viewed as a useful tool in solving ombinatorialor disrete geometri problems of relevane to omputing and the analysis ofalgorithms, [Mat02, Mata, �Ziv98℄.(b) Computational topology emerges [BEA+99℄ as a separate branh of omputa-tional geometry unifying topologial questions in omputer appliations suhas image proessing, artography, omputer graphis, solid modeling, meshgeneration, and moleular modeling [BEA+99, DEG99℄.() E�etive algebrai topology deals with algorithmi and omputational as-pets of topology inluding the reognition problem (3-manifolds), e�etiveomputations of topologial invariants (homology, homotopy groups, knot in-variants), et. [Ser℄.(d) Combinatorial proofs of statements originally obtained by nononstrutivetopologial methods were disovered [Matb, Zie02℄.(e) The methods of AT an provide qualitative and shape information unavailableby the use of other methods. For example AT provides a tool for visualization1A dream of G.W. Leibniz expressed in a letter to C. Huygens dated 1697; see [Bre95, Chap. 7℄.209



210 R.T. �Zivaljevi�and feature identi�ation in highly omplex empirial data, e.g., in biogeom-etry [BioG℄.(f) AT provides a useful framework for analyzing problems in distributed andonurrent omputing [HR95, HR00℄.HOW IS TOPOLOGY APPLIED IN DISCRETE GEOMETRIC PROBLEMS?In this hapter we put some emphasis on the role of (equivariant) topologial meth-ods in solving ombinatorial or disrete geometri problems that have proven to beof relevane for omputational geometry and omputational mathematis in gen-eral. The versatile on�guration spae/test map sheme was developed in numerousresearh papers over the years and formally odi�ed in [�Ziv98℄. Its essential featuresare the following two steps:Step 1: The problem is rephrased in topologial terms.The problem should give us a lue how to de�ne a \natural" on�gurationspae X and how to rephrase the question in terms of zeros or oinidenes ofthe assoiated test maps. Alternatively the problem may be divided into severalsubproblems, in whih ase one is often led to the question of when the subsets ofX orresponding to the various subproblems have nonempty intersetion.Step 2: A standard topologial tehnique is used to solve the rephrasedproblem.The topologial tehnique that is most frequently used in disrete geometriproblems is based on the tehnique of interseting homology lasses and on gener-alized Borsuk-Ulam theorems.14.1 THE CONFIGURATION SPACE/TEST MAP PARADIGMGLOSSARYCon�guration spae/test map sheme (CS/TM): A very useful and gen-eral sheme for proving ombinatorial or geometri fats. The problem is re-dued to the question of showing that there does not exist a G-equivariant mapf : X ! V n Z (Setion 14.5) where X is the on�guration spae, V the testspae, and Z the test subspae assoiated with the problem, while G is a natu-rally arising group of symmetries.Con�guration spae: In general, any topologial spae X that parameterizes alass of on�gurations of geometri objets (e.g., arrangements of points, lines,fans, ags, et.) or ombinatorial strutures (trees, graphs, partitions, et.).Given a problem P , an assoiated on�guration or andidate spae XP olletsall geometri on�gurations that are (reasonable) andidates for a solution of P .Test map and test spae : A map t : XP ! V from the on�guration spae XPinto the so-alled test spae V that tests the validity of a andidate p 2 XP as



Chapter 14: Topologial methods 211a solution of P . The �nal ingredient is the test subspae Z � V , where p 2 Xis a solution to the problem if and only if t(p) 2 Z. Usually V �= Rd while Z isjust the origin f0g � V or more generally a linear subspae arrangement in V .Equivariant maps: The �nal ingredient in the CS/TM-sheme is a group G ofsymmetries that ats on both the on�guration spae XP and the test spaeV (keeping the test subspae Z invariant). The test map t is always assumedG-equivariant, i.e., t(g � x) = g � t(x) for eah g 2 G and x 2 XP . Some of themethods and tools of equivariant topology are outlined in Setion 14.5.EXAMPLE 14.1.1 (Y. Soibelman [Soi02℄)Suppose that � is a metri on R2 that indues the same topology as the usual Eu-lidean metri. In other words we assume that for eah sequene of points (xn)n�0,�(xn; x0)! 0 if and only if jxn�x0j ! 0. Then there exists a �-equilateral triangle,i.e., a triple (a; b; ) of distint points in R2 suh that �(a; b) = �(b; ) = �(; a).This is our �rst example that illustrates the CS/TM-sheme. The on�gurationspaeX should ollet all andidates for the solution, so a �rst, \naive" hoie is thespae of all (ordered) triples (x; y; z) 2 R2. Of ourse we an immediately rule outsome obvious nonsolutions, e.g., degenerate triangles (x; y; z) suh that at least oneof numbers �(x; y); �(y; z); �(z; x) is zero. (This illustrates the fat that in generalthere may be several possible hoies for a on�guration spae assoiated to theinitial problem.) Our hoie is X := R2 n � where � := f(x; x; x) j x 2 R2g. A\triangle" (x; y; z) 2 X is �-equilateral if and only if (�(x; y); �(y; z); �(z; x)) 2 Z,where Z := f(u; u; u) 2 R3 j u 2 Rg. Hene a test map t : X ! R3 is de�ned byt(x; y; z) = (�(x; y); �(y; z); �(z; x)), the test spae is V = R3, and Z � R3 is theassoiated test subspae. A triangle fx; y; zg, viewed as a set of verties, is in generallabeled by six di�erent triples in the on�guration spae X . This redundany is amotivation for introduing the group of symmetries G = S3, whih ats on both theon�guration spaeX and the test spae V . The test map t is learly S3-equivariant.If the image of t is disjoint from Z, there arises an S3-equivariant map from X toV n Z. If S1 is the unit irle in a 2-plane in V = R3 orthogonal to Z �= R1, thenprojetion and normalization give an S3-equivariant map � : V nZ ! S1. The unit3-sphere S3 in a 4-plane orthogonal to � is S3-invariant, hene the inlusion map� : S3 ! X is S3-equivariant. Finally, the omposition f = � Æ t Æ � : S3 ! S1 isalso S3-equivariant, whih leads to a ontradition. One way to prove this is to useTheorem 14.5.1, sine the sphere S3 is learly 1-onneted.Here is another example of how topology omes into play and proves useful ingeometri and ombinatorial problems. The on�guration spae assoiated to thenext problem is a 2-dimensional torus T 2 �= S1 � S1. This time, however, the testmap is not expliitly given. Instead, the problem is redued to ounting intersetionpoints of two \test subspaes" in T 2.EXAMPLE 14.1.2 A wath with two equal handsA wath was manufatured with a defet so that both hands (minute and hour)are idential. Otherwise the wath works well and the question is to determine thenumber of ambiguous positions, i.e., the positions for whih it is not possible todetermine the exat time.First of all we observe that every position of a hand is determined by an angle
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����a ���� ��*PPq&%'$a1269 33:11 or2:17 ?!!�FIGURE 14.1.1The on�guration spae of the two hands is a torus! 2 [0; 2�℄, so that the on�guration spae of all possible positions of a hand ishomeomorphi to the unit irle S1. Two independent hands have the 2-dimensionaltorus T 2 �= S1 � S1 as their on�guration spae, i.e., the spae representing allallowed states or positions of the system. A usual model of a torus is a squareor a retangle (see Figure 14.1.1) with the opposite sides glued together. If �orresponds to the minute hand and ! is the oordinate of the hour hand, then thefat that the �rst hand is twelve times faster is reorded by the equation � = 12!.This equation desribes a urve �1 on the torus T 2, whih is just a irle winding12 times in the diretion of the � axis while it winds only one in the diretionof ! axis. The urve �1 is represented in our piture as the union of 12 linesegments, seven of them indiated in Figure 14.1.1. If the hands hange plaesthen the orresponding urve �2 has equation ! = 12 �. The ambiguous positionsare exatly the intersetion points of these two urves (exept those that belong tothe diagonal � := f(�; !) j � = !g, when it is still possible to tell the exat timewithout knowing whih hand is for hours and whih for minutes). The reader annow easily �nd the number of these intersetion points and ompute that there are143 of them in the intersetion �1 \ �2, and 11 in the intersetion �1 \ �2 \ �,whih shows that there are all together 132 ambiguous positions.REMARK 14.1.3Let us note that the \wath with equal hands" problem redues to ounting pointsor 0-dimensional manifolds in the intersetion of two irles, viewed as 1-dimensionalsubmanifolds of the 2-dimensional manifold T 2. More generally, one may be inter-ested in how many points there are in the intersetion of two or more submani-folds of a higher-dimensional ambient manifold. Topology gives us a versatile toolfor omputing this and muh more, in terms of the so-alled intersetion produt� _ � of homology lasses � and � in a manifold M . This intersetion produt is,via Poinar�e duality, equivalent to the \up" produt, and has the usual properties[Mun84℄. In our Example 14.1.2, keeping in mind that a _ b = � b _ a for all1-dimensional lasses, and in partiular that a _ a = 0 if dim (a) = 1, we have[�1℄ _ [�2℄ = ([�℄ + 12[!℄) _ ([!℄ + 12[�℄) = [�℄ _ [!℄ + 12[!℄ _ [!℄ + 12[�℄ _[�℄ + 144[!℄ _ [�℄ = 143[!℄ _ [�℄ and, taking the orientation into aount, weonlude that the number of intersetion points is 143.



Chapter 14: Topologial methods 21314.2 PARTITIONS OF MASS DISTRIBUTIONSProblems of partitioning mass distributions in the plane, 3-spae, or spaes of higherdimension form the �rst irle of disrete geometri problems where topologialmethods have traditionally been applied with great suess.An (open) ham sandwih is a olletion of three measurable sets in R3, repre-senting a slie of bread, a slie of ham, and a slie of heese. It turns out that therealways exists a plane simultaneously halving all three measurable sets or, in otherwords, that a ham sandwih an be ut fairly into two piees by a single straightut. Suppose, on the other hand, that you want to split an irregularly shaped slieof pizza with a hungry friend who is supposed to divide the pizza into two piees bya straight knife-ut, but who an ut anywhere he likes. You are allowed to markyour piee in advane by speifying a single point that will lie in your piee. Then,if you are very areful about marking your piee, you an ount on at least one thirdof the pizza. These two results are instanes of the ham sandwih theorem and theenter point theorem whih, together with their relatives, often require topologialmethods in their proofs.GLOSSARYMeasure: An abstrat funtion � de�ned on a lass of sets that has all the formalproperties (additivity, positivity) of the usual volume or area funtions.Measurable set: Any set in the domain of the funtion �.Mass distribution and density funtion: A density funtion is an integrablefuntion f : Rd ! [0;+1) representing the density of a \mass distribution"(measure) on Rd. The measure � arising this way is de�ned by �(A) := RA f dx.Halving hyperplane: A hyperplane that simultaneously bisets a family of mea-surable sets.Grassmann and Stiefel manifolds: The Grassmann manifold Gk(Rn) of allk-dimensional linear subspaes of Rn and the Stiefel manifold Vk(Rn) of all or-thonormal k-frames in Rn are frequently used in the onstrution of on�gurationspaes assoiated to measure partitioning problems.14.2.1 THE HAM SANDWICH THEOREMGiven a olletion of d measurable sets (mass distributions, �nite sets) in Rd, theproblem is to simultaneously biset all of them by a single hyperplane. Often ameasurable set is a geometri objet A � Rd, say a polytope, whose measure issimply its volume vol A. More generally, a measurable set A is an arbitrary subsetof Rd if it is lear from the ontext what we mean by its \measure" �(A). Typially,A is a Lebesgue-measurable set and �(A) = m(A) its Lebesgue measure whih,in the usual ases, redues to the measure vol desribed above. More generally, iff : Rd ! R+ is an integrable density funtion, then �(A) := RA f dm = RRd f�A dmis the measure or the mass distribution assoiated with the funtion f , where �Ais the harateristi funtion of A (1 on A, 0 otherwise). An important speial



214 R.T. �Zivaljevi�ase arises if f = �B for a Lebesgue-measurable set B, where �(A) = m(A \ B).Finally, if S � Rd is a �nite set, then �(A) := jA \ Sj is the so-alled ountingmeasure indued by the set S. All of these examples are subsumed by the aseof a positive, �-additive Borel measure �. This means that � is de�ned on a �-algebra F of subsets of Rd that inludes all losed halfspaes and other sets thatarise naturally in geometri problems. The reader should, in priniple, not haveany diÆulty reformulating any of the following results for whatever speial lassof measures she may be interested in.THEOREM 14.2.1 Ham Sandwih TheoremLet �1; �2; : : : ; �d be a olletion of measures (mass distributions, measurable sets,�nite sets) in the sense above. Then there exists a hyperplane H suh that for alli = 1; : : : ; d, �i(H+) � 1=2�i(Rd) and �i(H�) � 1=2�i(Rd), where H+ and H�are the losed halfspaes assoiated with the hyperplane H.In the speial ase where �(H) = 0, i.e., where the hyperplane itself has measurezero, H is alled a halving hyperplane sine �i(H+) = �i(H�) = 1=2�i(Rd) forall i. A halving hyperplane H is also alled a \ham sandwih ut," for the reasonsnoted above.TOPOLOGICAL BACKGROUNDThe topologial result lying behind the ham sandwih theorem is the Borsuk-Ulamtheorem, [Ste85, Mata℄. The proof of the ham sandwih theorem historially marksone of the �rst appliations of the CS/TM-sheme, with the (d�1)-sphere as theon�guration spae, Rd as the test spae, and G = Z2 as the group of symmetriesassoiated to the problem. Given a olletion fAigdi=1 of d measurable sets, the testmap t : Sd�1 ! Rd is de�ned by t(e) = (�1; : : : ; �d), with �i determined by theondition that Hi := fx 2 Rd j hx; ei = �ig is a halving hyperplane for the meas-urable set Ai. The test spae is the diagonal Z := f(�; : : : ; �) 2 Rd j � 2 Rg. Thetest map t is obviously \odd", or Z2-equivariant, in the sense that t(�e) = �t(e).THEOREM 14.2.2 Borsuk-Ulam TheoremFor every ontinuous map f : Sn ! Rn from an n-dimensional sphere into n-dimensional Eulidean spae, there exists a point x 2 Sn suh that f(x) = f(�x).An important speial ase of the Borsuk-Ulam theorem arises if f is an oddmap. The onlusion is that a ontinuous odd map must have a zero on the sphere,i.e., f(x) = 0 for some x 2 Sd. This is preisely the reason why the test map tfor the ham sandwih theorem has the property t(e) 2 Z for some e 2 Sd�1. Notethat the general Borsuk-Ulam theorem follows from the speial ase if the latter isapplied to the map � : Sd ! Rd given by �(x) = f(x)� f(�x).There is a di�erent topologial approah to the ham sandwih theorem loserto the earlier example about a wath with two indistinguishable hands. Here wemention only that the role of the torus T 2 is played by a manifoldM representing allhyperplanes in Rd (the on�guration spae), while the urves �1 and �2 are replaedby suitable submanifolds Ni of M , one for eah of the measures �i; i = 1; : : : ; d.Ni is de�ned as the spae of all halving hyperplanes for the measurable set Ai.



Chapter 14: Topologial methods 215APPLICATIONS AND RELATED RESULTSLet S1; : : : ; Sd be a olletion of �nite sets, alled \olors," in Rd. Assume that thesize of eah of these sets is n and that the points are all in general position. Then,aording to Akiyama and Alon (see [B�ar93℄), the ham sandwih theorem impliesthat there exists a partition of S := Sdi=1 Si into n nonempty, pairwise disjoint setsD1; : : : ; Dn that are multiolored in the sense that jDi \ Sj j = 1 for all i and j,suh that the simplies onv D1; : : : ; onv Dn are pairwise disjoint.14.2.2 THE CENTER POINT THEOREMTHEOREM 14.2.3 Center Point TheoremLet A � Rd be a Lebesgue-measurable subset of Rd or, more generally, one of themeasures � desribed prior to Theorem 14.2.1. Then there exists a point x 2 Rdsuh that for every losed halfspae P � Rd, if x 2 P thenvol(P \A) � vol(A)d+ 1 :When formulated for a more general measure �, the result guarantees that �(P ) ��(Rd)=(d+ 1) for every losed halfspae P 3 x.TOPOLOGICAL BACKGROUNDIf the Borsuk-Ulam theorem is responsible for the ham sandwih theorem, thenR. Rado's enter point theorem an be seen as a onsequene of another well-knowntopologial result, Brouwer's �xed point theorem. Note that the usual formulationabout self-maps f : K ! K generalizes easily to the following formulation.THEOREM 14.2.4 Brouwer's Fixed Point TheoremLet K be a ompat, onvex body in Rn. Suppose f : K ! Rn is a ontinuous mapsuh that for eah x 2 K the image f(x) belongs to the supporting one of K atx; onex(K) := S��0(x+ �(K � x)). Then f(x) = x for some x 2 K.Very often it is more onvenient to use Kakutani's theorem, whih is a gener-alization of Brouwer's theorem to \multivalued funtions" f : B ! Rn.The enter point theorem is dedued from Brouwer's theorem roughly as fol-lows. Let x 2 B, where B is a \large" ball ontaining the set A. If x is not a enterpoint, then there is a vetor e 2 Sd�1 pointing in a diretion in whih x an bemoved to make it loser to being one. In this way we de�ne a funtion x 7! f(x),and a �xed point, i.e., a point that doesn't need to be moved, is a enter point.Reall that the enter point theorem was originally dedued from Helly's the-orem about interseting families of onvex sets, whih also has several topologialrelatives.



216 R.T. �Zivaljevi�APPLICATIONS AND RELATED RESULTSThe �rst proof of the enter point theorem (R. Rado) was based on Helly's theo-rem. For this reason, it is often viewed as a measure-theoreti equivalent of Helly'stheorem.As noted by Miller and Thurston (see [MTTV97, MTTV98℄), the enter pointtheorem and the Koebe theorem on the disk representation of planar graphs an beused to prove the existene of a small separator for a planar graph, a result provedoriginally (by Lipton and Tarjan) by di�erent methods.The regression depth rdP(H) of a hyperplane H relative to a olletion Pof n points in Rd is the minimum number of points that H must pass through inmoving to the vertial position. Dually, given an arrangement H of n hyperplanesin Rd, the regression depth rdH(x) of a point x relative to H is the smallest k suhthat x annot esape to in�nity without rossing (or moving parallel to) at leastk hyperplanes. The problem of �nding a point (resp. hyperplane) with maximumregression depth relative to H (resp. P) is shown in [AET00℄ to be intimatelyonneted with the problem of �nding enter points. The main result (on�rminga onjeture of Rousseeuw and Hubert) is that there always exists a point withregression depth dn=(d+ 1)e; f. Chapter 57 of this Handbook.14.2.3 CENTER TRANSVERSAL THEOREMTHEOREM 14.2.5 Center Transversal TheoremLet A0; A1; : : : ; Ak; 0 � k � d � 1, be a olletion of Lebesgue-measurable sets inRd or, more generally, let �0; �1; : : : ; �k be a sequene of measures. Then thereexists a k-dimensional aÆne subspae D � Rd suh that for every losed halfspaeH(v; �) := fx 2 Rd j hx; vi � �g and every i 2 f0; 1; : : : ; kg,D � H(v; �) =) m(Ai \H(v; �)) � m(Ai)d� k + 1 :If formulated for a sequene �0; : : : ; �k of more general measures, the result guar-antees that �i(H(v; �)) � �i(Rd)=(d� k + 1) for all i and all H(v; �) � D.TOPOLOGICAL BACKGROUNDThe enter transversal theorem ontains the ham sandwih and enter point theo-rems as two boundary ases [ZV90℄. The topologial priniple that is at the rootof this result should be strong enough for this purpose. This result has severalinarnations. One of them, in the language of the CS/TM-sheme, is a theorem ofE. Fadell and S. Husseini [FH88℄ that laims the nonexistene of a Z�k2 -equivariantmap f : Vn;k ! (Rk)n�k nf0g from the Stiefel manifold of all orthonormal k-framesin Rn to the sum of n � k opies of Rk. The group Z�k2 an be identi�ed withthe group of all diagonal matries in SO(k) and its ation on Rk is indued by theobvious ation of SO(k). A related result [FH88, ZV90℄ is that the vetor bun-dle ��(n�k)k does not admit a nonzero, ontinuous ross-setion, where �k is thetautologial k-plane bundle over the Grassmann manifold Gk(Rn).



Chapter 14: Topologial methods 217APPLICATIONS AND RELATED RESULTSThe following Helly-type transversal theorem, due to Dol'nikov (see [Ek93℄), isa onsequene of the same topologial priniple that is at the root of the en-ter transversal theorem. Moreover, the enter transversal theorem is related toDol'nikov's result in the same way that the enter point theorem is related toHelly's theorem.THEOREM 14.2.6Let K0; : : : ;Kk be families of ompat onvex sets. Suppose that for every i, and foreah k-dimensional subspae V � Rd, there exists a translate Vi of V intersetingevery set in Ki. Then there exists a ommon k-dimensional transversal of the familyK := Ski=0 Ki, i.e., there exists an aÆne k-dimensional subspae of Rd intersetingall the sets in K.Let K = fK0; :::;Kkg be a family of onvex bodies in Rn, 1 � k � n� 1. Thenan aÆne l-plane A � Rn is alled a ommon maximal l-transversal of K ifm(Ki \ A) � m(Ki \ (A + x)) for eah i 2 f0; :::; kg and eah x 2 Rn, where mis l-dimensional Lebesgue measure in A and A + x, respetively. It was shown in[MVZ01℄ that, given a family K = fKigki=0 of onvex bodies in Rn (k < l), the setCl(K) of all ommon maximal l-transversals of K has to be \large" from both themeasure-theoreti and the topologial point of view. Here again one uses the sametopologial priniple responsible for all results in this setion together with someintegral geometry alulations to show that a ohomologially \big" subspae ofthe Grassmann manifold Gk(Rn) has to be large also in a measure-theoreti sense.14.2.4 EQUIPARTITION OF MASSES BY HYPERPLANESA measurable set A � R3 an be partitioned by three planes into 8 piees of equalmeasure. This is an instane of the general problem of haraterizing all triples(d; j; k) suh that for any j mass distributions (measurable sets) in Rd, there existk hyperplanes, k � d, suh that eah of the 2k \orthants" ontains the fration1=2k of eah of the masses. Suh a triple (d; j; k) will be alled admissible. Forexample, the ham sandwih theorem implies that (d; d; 1) is admissible. It is known(E. Ramos, [Ram96℄) that d � j(2k � 1)=k is a neessary ondition and d � j2k�1a suÆient one for a triple (d; j; k) to be admissible. Ramos's method yields manyinteresting results in lower dimensions, inluding the admissibility of the triples(9; 3; 3), (9; 5; 2), and (5; 1; 4). The most interesting speial ase that still seemsto be out of reah is the triple (4; 1; 4). The key idea in these proofs is to use, forthis purpose, a speially designed, generalized form of the Borsuk-Ulam theoremfor ontinuous, \even-odd" maps of the form f : Sd�1 � : : :� Sd�1 ! Rl.APPLICATIONS AND RELATED RESULTSAording to [Mata℄, an early interest of omputer sientists in partitioning massdistributions by hyperplanes was stimulated in part by geometri range searhing ;f. Chapter 36 of this Handbook. As noted by Matou�sek, the lassial mass parti-tioning results were eventually superseded by random sampling and related results.However, one still wonders about the possible impat of a positive answer to the



218 R.T. �Zivaljevi�following onjeture (a speial ase of the onjeture that (4; 1; 4) is admissible) tothe onstrution and omplexity of geometri algorithms.CONJECTURE 14.2.7For eah olletion of 16 distint points A1; : : : ; A16 in R4, there exist 4 hyperplanesH1; : : : ; H4 suh that eah of the assoiated 16 open orthants ontains at most oneof the given points.It is known that the answer to the onjeture is positive if the points aredistributed along a onvex urve in R4 (a urve in Rm is onvex if, like themoment urve, it intersets eah hyperplane in at most m distint points). Thisspeial ase of the onjeture follows [Ram96℄ from the existene of uniform Grayodes on 4-dimensional ubes. Reall that a uniform Gray ode on a k-dimensionalube is a Hamiltonian iruit on the graph of all edges of the ube that is balanedin the sense that it uses the same number of edges from eah of k parallel lasses.14.2.5 RADIAL PARTITIONS BY POLYHEDRAL FANSAn old result of R. Buk and E. Buk [BB49℄ says that for eah ontinuous massdistribution in the plane, there exist three onurrent lines l1; l2; l3 � R2 thatpartition R2 into six setors of equal measure. It is natural to searh for higherdimensional analogs of this result.Suppose that Q � Rd is a onvex polytope and assume that the origin O 2 Rdbelongs to the interior int(Q) of Q. Let fFigki=1 be the olletion of all faets of Q.Let F := fan(Q) be the assoiated fan, i.e., F = fC1; : : : ; Ckg where Ci = one(Fi)is the onvex losed one with vertex O generated by Fi.THEOREM 14.2.8 [Mak01℄Let Q be a regular dodeahedron with the origin O 2 R3 as its baryenter. Thenfor any entrally symmetri, ontinuous mass distribution � on R3, there exists alinear map L 2 GL(3;R) suh that�(L(C1)) = �(L(C2)) = : : : = �(L(Ck)):Makeev atually shows in [Mak01℄ that L an be found in the set of all matriesof the form a � t, where t is an upper triangular matrix and a 2 GL(3;R) is a matrixgiven in advane. In an earlier paper (see [Mak98℄) he showed that a radial partitionby a fan determined by the faets of a ube always exists for an arbitrary measure inR3. Moreover, he shows in [Mak01℄ that a result analogous to Theorem 14.2.8 alsoholds for rhombi dodeahedra. Reall that the rhombi dodeahedron U3 is thepolytope bounded by twelve planes, eah ontaining an edge of a ube and parallelto one of the great diagonal planes. A higher dimensional analogue of the rhombidodeahedron is the polytope Un in Rn desribed as the dual of the di�erene bodyof a regular simplex.PROBLEM 14.2.9Let T � Rn be a regular simplex and Q := T�T the assoiated \di�erene polytope."Let Un := QÆ be the polytope polar to Q. Clearly Un is a entrally symmetripolytope with n2 + n faets Fi; i = 1; : : : ; n2 + n. Let fKign2+ni=1 be the assoiatedonial dissetion of Rn, where Ki := one(Fi). Is it true that for any ontinuous



Chapter 14: Topologial methods 219mass distribution � on Rn there exists a nondegenerate aÆne map A : Rn ! Rnsuh that �(A(K1)) = �(A(K2)) = : : : = �(A(Kn2+n)) ?The following result of Vre�ia and �Zivaljevi� is an example of a radial partitionresult for a single measure in Rn with ratios presribed by a positive vetor �.THEOREM 14.2.10 [VZ01℄Let � � Rn be a nondegenerate simplex with O 2 int(�). Suppose that � is aontinuous mass distribution on Rn, and let � = (�0; : : : ; �n) be a given positivevetor suh that �0 + : : : + �n = 1. Then there exists a vetor v 2 Rn suh that�(v +Ki) = �i �(Rn) for eah i = 0; : : : ; n, where F = fan(�) = fKigni=0 is theradial fan assoiated to �.14.2.6 EQUIPARTITIONS BY WEDGELIKE CONESThe enter transversal theorem is a ommon generalization of the ham sandwihtheorem and the enter point theorem. There is another general statement ex-tending the ham sandwih theorem that, as a speial boundary ase, inludes theequipartition ase of Theorem 14.2.10.THEOREM 14.2.11 [VZ92℄Let � := onv(faigmi=0) be a regular simplex of dimension m � d and let P := a� �be its aÆne hull. Then there is a dissetion D(�) = fDigmi=0 of Rd into m + 1wedgelike ones, where Di := P? � one(onv(fajgj 6=i)).CONJECTURE 14.2.12Let �0; : : : ; �k be a family of ontinuous mass distributions (measures), 0 � k �d � 1, de�ned on Rd. Then there exists a (d�k)-dimensional regular simplex �suh that for the orresponding dissetion, D(�), for some x 2 Rd, and for all i; j,�i(x+Dj) � �i(Rd)d� k + 1 :This onjeture is denoted in [VZ92℄ by B(d; k). Theorem 14.2.10 impliesB(d; 0), and the ham sandwih theorem is B(d; d � 1). The onjeture is alsoon�rmed in the ase B(d; d�2) for all d. Moreover, there exists a natural topolog-ial onjeture implying B(d; k) that is losely related to the analogous statementneeded for the enter transversal theorem. This statement, denoted in [VZ92℄ byC(d; k), in the spirit of the CS/TM-sheme, essentially laims that there does notexists a Zk+1-equivariant map from the Stiefel manifold Vk(Rn) to the unit sphereS(V ) in an appropriate Zk+1-representation V .14.2.7 PARTITIONS BY CONVEX SETSCONJECTURE 14.2.13Let n and d be integers with n; d � 2. Assume that �1; : : : ; �d are ontinuous massdistributions suh that �1(Rd) = : : : = �d(Rd) = n. Then there exists a partition of



220 R.T. �Zivaljevi�Rd into n sets C1; : : : ; Cn suh that the interiors int(Ci) are onvex sets and that�i(Ci) = 1 for eah i = 1; : : : ; n.This onjeture was formulated in [KK99℄ by A. Kaneko and M. Kano forthe ase d = 2. Kaneko and Kano originally formulated the onjeture for �nitesets rather than for ontinuous mass distributions, but this is not essential. Notethat the ase n = 2 is true by the ham sandwih theorem. The ase d = 2 wasindependently established by S. Bespamyatnikh, D. Kirkpatrik, and J. Snoeyink,by T. Sakai, and by H. Ito, H. Uehara, and M. Yokoyama; see [BM01℄ for additionalinformation.14.2.8 PARTITIONS BY k-FANS IN PRESCRIBED RATIOSThe onjeture of Kaneko and Kano (the ase d = 2; n = 3) motivated I. B�ar�anyand J. Matou�sek in [BM01, BM02℄ to study general onial partitions of planar orspherial measures in presribed ratios. We assume, in the following statements,that all measures are ontinuous mass distributions.An arrangement of k semilines in the Eulidean (projetive) plane or on the2-sphere is alled a k-fan if all semilines start from the same point. A k-fan is an�-partition for a probability measure � if �(�i) = �i for eah i = 1; :::; k, wheref�igki=1 are onial setors assoiated with the k-fan and � = (�1; :::; �k) is a givenvetor. The set of all � = (�1; :::; �m) suh that for any olletion of probabilitymeasures �1; :::; �m there exists a ommon �-partition by a k-fan is denoted byAm;k. It was shown in [BM01℄ that the interesting ases of the problem of existeneof �-partitions are (k;m) = (2; 3); (3; 2); (4; 2).CONJECTURE 14.2.14Suppose that (k;m) is equal to (2; 3); (3; 2) or (4; 2)g. Then � 2 Ak;m if and only if�1 + : : :+ �m = 1 and �i > 0 for eah i = 1; : : :m:The only known elements in A4;2 are, up to a permutation of oordinates,( 14 ; 14 ; 14 ; 14 ) and ( 15 ; 15 ; 15 ; 25 ). They were disovered by B�ar�any and Matou�sek by aningenious appliation of the CS/TM sheme [BM01, BM02℄. From this B�ar�any andMatou�sek dedued that f( 13 ; 13 ; 13 ); ( 12 ; 14 ; 14 )g [ f(p5 ; q5 ; r5 ) j p; q; r 2 N+; p+ q + r =5g � A3;2.Conjeture 14.2.14 was on�rmed in full in the ase (k;m) = (2; 3) by R. �Zi-valjevi� in [�Ziv02℄. Building on the CS/TM sheme of B�ar�any and Matou�sek,he dedued the result from the fat that under mild onditions there does notexist a Q4n-equivariant map f : S3 ! V n A(�), where A(�) is a Q4n-invariant,linear subspae arrangement in a Q4n-representation V, and Q4n is the generalizedquaternion group. This fat is in turn established by showing that an appropriateobstrution in the group 
1(Q4n) of Q4n-bordisms does not vanish.14.2.9 OTHER EQUIPARTITIONSThere are other types of partitions of mass distributions. A \obweb partitiontheorem" of Shulman (see [Mata℄) guarantees an equipartition of a plane massdistribution into 8 piees by an arrangement of lines resembling a obweb.
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Chapter 14: Topologial methods 221A result of Paterson (see [Mata℄) is an interesting example of a ham sandwih-type theorem that deals with partitions of lines rather than of points. It says thatfor every set of lines in R3, there exist 3 mutually perpendiular planes suh thatthe interior of eah of the resulting otants is interseted by no more than half ofthe lines.14.3 THE PROBLEMS OF BORSUK AND KNASTERThe topologial methods used in proofs of measure partition results are atuallyappliable to a muh wider lass of ombinatorial and geometri problems. Thisphenomenon an be partially explained by the fat that quite di�erent problems,whih on the surfae have very little in ommon (say one of them may be disreteand the other not), may atually lead to the same or losely related on�gurationspaes and test maps. This in turn implies that suh problems both follow fromthe same general topologial priniple and that they ould, despite appearanes, belassi�ed as \relatives".14.3.1 BORSUK'S PROBLEMBorsuk's well-known problem about overing sets in Rn with sets of smaller diameterwas solved in the negative by J. Kahn and G. Kalai [KK93℄ who proved that thesize of a minimal over is exponential in n; see Chapters 1 and 2 of this Handbook.This, however, gave a new impetus to the study of \Borsuk numbers" after the oldexponential upper bounds suddenly beame more plausible. This may be one of thereasons why results about \universal overs", originally used for these estimates,have reeived new attention in the last few years.The following result was proved originally by V. Makeev; see also [HMS, Kup99℄.Reall the rhombi dodeahedron U3, the polytope bounded by twelve rhombifaets, whih appeared in Setion 14.2.5.THEOREM 14.3.1 [Mak98℄A rhombi dodeahedron of width 1 is a universal over for all sets S � R3 ofdiameter 1. In other words, eah set of diameter 1 in 3-spae an be overed by arhombi dodeahedron whose opposite faes are 1 unit apart.Let � � Rn be a regular simplex of edge-length 1, with verties v1; : : : ; vn+1.Then the intersetion of n(n + 1)=2 parallel strips Sij of width 1, where Sij isbounded by the (n�1)-planes orthogonal to the segment [vi; vj ℄ passing throughthe verties vi and vj (i < j), is a higher dimensional analog of the rhombi dode-ahedron. It is easy to see that this is just another desription of the polytope Unthat we enountered in Problem 14.2.9.CONJECTURE 14.3.2 Makeev onjeture [HMS℄The polytope Un is a universal over in Rn. In other words, for eah set S � Rn ofdiameter 1, there exists an isometry I : Rn ! Rn suh that S � I(Un).The relevane of the Makeev onjeture for the general Borsuk problem isobvious. The following stronger onjeture is yet another example of a topologial



222 R.T. �Zivaljevi�statement with potentially interesting onsequenes in disrete and omputationalgeometry.CONJECTURE 14.3.3 [HMS℄Let f : Sn�1 ! R be an odd funtion, and let �n � Rn be a regular simplex ofedge-length 1, with verties v1; : : : ; vn+1. Then there exists an orthogonal linearmap A 2 SO(n) suh that the n(n+ 1)=2 hyperplanes Hij ; 1 � i < j � n+ 1, areonurrent, whereHij := fx 2 Rn j hx;A(vj � vi)i = f(A(vj � vi))g:G. Kuperberg showed in [Kup99℄ that, unlike the ases n = 2 and n = 3, forn � 4 there is homologially an even number of isometries I : Rn ! Rn suh thatS � I(Un) for a given set S of onstant width. Kuperberg showed that the Makeevonjeture an be redued (essentially in the spirit of the CS/TM-sheme) to thequestion of the existene of a �-equivariant map f : SO(n) ! V n f0g, where � isa group of symmetries of the root system of type An and the test spae V is ann(n� 1)=2-dimensional representation of �. The fat that suh a map exists if andonly if n � 4 may be an indiation that the Makeev onjeture is false in higherdimensions.14.3.2 KNASTER'S PROBLEMKnaster's problem is one of the old onjetures of disrete geometry with a distinttopologial avor. The onjeture is now known to be false in general, but theproblem remains open in many interesting speial ases.PROBLEM 14.3.4 Knaster's problem [Kna47℄Given a �nite subset S = fs1; : : : ; skg � Sn of the n-sphere, determine the ondi-tions on k and n so that for eah ontinuous map f : Sn ! Rm there will exist anisometry O 2 SO(n+ 1) withf(O(s1)) = f(O(s2)) = : : : = f(O(sk)):Knaster originally onjetured that suh an isometry O always exists if k �n �m + 2. Just as in the ase of the Borsuk problem, the �rst ounterexamplestook a long time to appear. V. Makeev, and somewhat later K. Babenko andS. Bogatyi (see [Che98℄), showed that the ondition k � n�m+ 2 is not suÆientif the original set S is suÆiently \at." In [Che98℄, W. Chen onstruted newounterexamples on�rming that the (original) Knaster onjeture is false for alln > m > 2.The fat that Knaster's onjeture is false in general does not rule out thepossibility that for some speial on�gurations S � Sn the answer is still positive.The ase where S is the set of verties of a \big" regular simplex in Sn is of speialinterest sine it diretly generalizes the Borsuk-Ulam theorem.Questions losely related to Knaster's onjeture are the problems of insribingor irumsribing polyhedra to onvex bodies in Rn; see [HMS, Kup99℄. G. Ku-perberg observed that both the irumsription problem for onstant-width bodiesand Knaster's problem are speial ases of the following problem.



Chapter 14: Topologial methods 223PROBLEM 14.3.5 [Kup99℄Given a �nite set T of points on Sd�1 and a linear subspae L of the spae of allfuntions from T to Rn, deide if, for eah ontinuous funtion f : Sd�1 ! Rn,there is an isometry O suh that the restrition of f ÆO to T is an element of L.14.4 TVERBERG-TYPE THEOREMS AND THEIRAPPLICATIONSA olletion of seven points in the plane an be partitioned into three nonempty,disjoint subsets so that the orresponding onvex hulls have a nonempty interse-tion. If we add two more points and olor all the points with three olors so thateah olor is equally represented, then there exists a partition of this set of nineolored points into three multiolored three-point sets suh that the orrespondingmultiolored triangles have a nonempty intersetion. Something similar is possiblein 3-spae, but this time we need �ve points of eah olor in order to guaranteea partition of this kind. In short, given a onstellation of �ve blue, �ve red, and�ve yellow stars in spae, it is always possible to form three vertex-disjoint mul-tiolored triangles with nonempty intersetion. These are the simplest nontrivialases of Tverberg-type theorems, whih, together with their onsequenes and mostimportant appliations, are shown in Figure 14.4.1.Continuous TverbergtheoremAÆne TverbergtheoremSplitting neklaesCommon transversals and theTverberg-Vre�ia problem
Topologial index theoryColored Tverbergtheorems, type A Colored Tverbergtheorems, type BHalving hyperplanes and the k-set problemPoint seletions and weak �-netsHadwiger-Debrunner (p; q)-problemCombinatoris of hessboard omplexes

? ���� HHHj
FIGURE 14.4.1Tverberg-type theorems.GLOSSARYTverberg-type problem: A problem in whih a �nite set A � Rd is to be parti-tioned into nonempty, disjoint piees A1; : : : ; Ap, possibly subjet to some on-straints, so that the orresponding onvex hulls fonv(Ai)gpi=1 interset.Colors: A set of k+1 olors is a olletion C = fC0; : : : ; Ckg of disjoint subsets ofRd, d � k. A set B � Rd is multiolored if it ontains a point from eah of the



224 R.T. �Zivaljevi�sets Ci; in this ase onv B is alled a rainbow simplex (possibly degenerate).Type A and Type B: Colored Tverberg problems are of type A or type B de-pending on whether k = d or k < d (resp.), where k +1 is the number of olors.Tverberg numbers T (r;d), T (r;k;d): T (r; k; d) is the minimal size of eah ofthe olors Ci; i = 0; : : : ; k, that guarantees that there always exist r intersetingrainbow simplies. T (r; d) := T (r; d; d).14.4.1 MONOCHROMATIC TVERBERG THEOREMSTHEOREM 14.4.1 AÆne Tverberg TheoremEvery set K = fajg(q�1)(d+1)j=0 � Rd with (d+1)(q�1)+1 elements an be partitionedinto q nonempty, disjoint subsets K1; : : : ;Kq so that the orresponding onvex hullshave nonempty intersetion: q\i=1 onv (Ki) 6= ; :(The speial ase q = 2 is Radon's theorem; see Chapter 4.)THEOREM 14.4.2 Continuous Tverberg TheoremLet �m be an m-dimensional simplex and assume that q is a prime integer. Thenfor every ontinuous map f : �(q�1)(d+1) ! Rd there exist vertex-disjoint faes�t1 ; : : : ;�tq � �(q�1)(d+1) suh that Tqi=1 f(�ti) 6= ;.APPLICATIONS AND RELATED RESULTSThe aÆne Tverberg theorem was proved by Helge Tverberg in 1966. The ontinuousTverberg theorem, proved by B�ar�any, Shlosman, and Sz�us, redues to the aÆneversion if f is an aÆne (simpliial) map. It is not known if this result remainstrue for arbitrary q, although several authors have independently on�rmed thisif q is a prime power: see [�Ziv98℄ for a historial aount. Some of the relevantreferenes for these two theorems and their appliations are [B�ar93, Bj�o95, Sar92,Ek93, Vol96, �Ziv98, Mat02, Mata℄.The following \neklae-splitting theorem" of Noga Alon (see [Mata℄) is a verynie appliation of the ontinuous Tverberg theorem.THEOREM 14.4.3Assume that an open neklae has kai beads of olor i, 1 � i � t, k � 2. Then it ispossible to ut this neklae at t(k � 1) plaes and assemble the resulting intervalsinto k olletions, eah ontaining exatly ai beads of olor i.REMARK 14.4.4The proof of the neklae-splitting theorem provides a very nie example of anappliation of the CS/TM sheme (Setion 14.1). A ontinuous model of a neklaeis an interval [0; 1℄ together with k measurable subsets A1; : : : ; Ak representing\beads" of di�erent olors. It is well known that the on�guration spae of allsequenes 0 � x1 � : : : � xm � 1 is the m-dimensional simplex, hene the totality



Chapter 14: Topologial methods 225of all m-uts of a neklae is identi�ed with an m-dimensional simplex �. Given aut  2 �, the assembling of the resulting subintervals I0(); : : : ; Im() of [0; 1℄ intok olletions is determined by a funtion f : [m+ 1℄! [k℄. Hene, a on�gurationspae assoiated to the neklae-splitting problem is obtained by gluing togetherm-simplies �f , one for eah funtion f 2 Fun([m + 1℄; [k℄). The omplex Cm;kobtained by this onstrution turns out, in fat, to be a very important exampleof a omplex obtained from a simplex by a deleted join operation. The readeris refereed to [Mata℄ and [�Ziv98℄ for details about the role of (deleted) joins inombinatoris.An interesting onnetion has emerged reently between ham-sandwih- andTverberg-type problems. An example of this is the so-alled Tverberg-Vre�ia on-jeture, whih inorporates both the enter transversal theorem (Theorem 14.2.5)and the (aÆne) Tverberg theorem in a single general statement.CONJECTURE 14.4.5Assume that 0 � k � d� 1 and let S0; S1; : : : ; Sk be a olletion of �nite sets in Rdof given ardinalities jSij = (ri � 1)(d � k + 1) + 1; i = 0; 1; : : : ; k. Then Si anbe split into ri nonempty sets, S1i ; : : : ; Srii , so that for some k-dimensional aÆnesubspae D � Rd; D \ onv(Sji ) 6= ; for all i and j; 0 � i � k; 1 � j � ri.This onjeture was on�rmed in [�Ziv99℄ for the ase where both d and k areodd integers and ri = q for eah i, where q is an odd prime number. ReentlyS. Vre�ia on�rmed this onjeture also in the ase r1 = : : : = rk = 2 [Vre02℄.The expository artile [Kal01℄ is reommended as a soure of additional infor-mation about Tverberg-type theorems not overed here. From among Kalai's deeponjetures, beautiful visions, and unexpeted possible onnetions (e.g. with the4-olor theorem), we selet the following onjeture.CONJECTURE 14.4.6 Gil Kalai (1974)Given a set A � Rd, let Tr(A) be the set of all points in Rd that belong to the onvexhull of r pairwise disjoint subsets of A. By onvention let dim(;) = �1. ThenjAjXr=1 dim(Tr(A)) � 0:14.4.2 COLORED TVERBERG THEOREMSLet T (r; k; d) be the minimal number t so that for every olletion of olors C =fC0; : : : ; Ckg with the property jCij � t for all i = 0; : : : ; k, there exist r mul-tiolored sets Ai = faijgkj=0, i = 1; : : : ; r, that are pairwise disjoint but wherethe orresponding rainbow simplies �i := onv Ai have a nonempty intersetion,Tri=1 �i 6= ;.The olored Tverberg problem is to establish the existene of, and then toevaluate or estimate, the integer T = T (r; k; d). The ases k = d and k < d arerelated, but there is also an essential di�erene. In the ase k = d, provided tis large enough, the number of interseting rainbow simplies an be arbitrarilylarge. In the ase k < d, for dimension reasons, one annot expet more thanr � d=(d� k) interseting k-dimensional rainbow simplies. This is the reason whyolored Tverberg theorems are lassi�ed as type A or type B, depending on whether



226 R.T. �Zivaljevi�k = d or k < d.In the type A ase, where T (r; d; d) is abbreviated simply as T (r; d), it is easyto see that a lower bound for this funtion is r. It is onjetured that this lowerbound is attained:CONJECTURE 14.4.7 (Type A)T (r; d) = r for all r and d.This onjeture has been on�rmed for r = 2 and for d � 2 [B�ar93℄.It is interesting to note (see Setion 14.4.3) that the olored Tverberg problem(type A) was originally onjetured and designed as a tool for solving importantproblems of omputational geometry. Note also that the weak form of the onje-ture, T (r; d) < +1, is already far from obvious.The following theorem of �Zivaljevi� and Vre�ia (see [B�ar93, Mata, �Ziv98℄)provides the best bounds known in the general ase. It implies that T (r; d) � 4r�3for all r and d.THEOREM 14.4.8 (Type A)For every integer r and every olletion of d+1 disjoint sets (\olors") C0; C1; : : : ; Cdin Rd, eah of ardinality at least 4r� 3, there exist r disjoint, multiolored subsetsSi � Sdi=0 Ci suh that r\i=1 onv Si 6= ;:If r is a power of a prime number then it suÆes to assume that the size of eah ofthe olors is at least 2r � 1. In other words, T (r; d) � 2r � 1 if r is a prime powerand T (r; d) � 4r � 3 in the general ase.In the type B ase, let us assume that r � d=(d � k), whih is a neessaryondition for a olored Tverberg theorem of type B.CONJECTURE 14.4.9 (Type B)T (r; k; d) = 2r � 1.There exist examples showing that T (r; k; d) � 2r � 1.The following theorem [VZ94, �Ziv98℄ on�rms Conjeture 14.4.9 above for thease of a prime power r.THEOREM 14.4.10 (Type B)Let C0; : : : ; Ck be a olletion of k + 1 disjoint �nite sets (\olors") in Rd. Letr be a prime integer suh that r � d=(d � k) and let jCij = t � 2r � 1. Thenthere exist r multiolored k-dimensional simplies Si, i = 1; : : : ; r, that are pairwisevertex-disjoint suh that r\i=1 onv Si 6= ;:The usual prie for using topologial (equivariant) methods is the extra as-sumption that r is a prime or a power of a prime number. On the other hand, theresults obtained by these methods hold in greater generality and inlude nonlinearversions of Theorems 14.4.8 and 14.4.10; see [�Ziv98℄ for details and examples.EXAMPLE 14.4.11



Chapter 14: Topologial methods 227The simplest instane of Theorem 14.4.10 is the ase d = 2, k = 1, and r = 2.Then, in the nonlinear version of this theorem, we reognize the well-known fatthat the omplete bipartite graph K3;3 is not planar. This is one of the earliestresults in topology, already known to Euler, who formulated it as a problem aboutthree houses and three wells.14.4.3 APPLICATIONS OF COLORED TVERBERG THEOREMSTheorem 14.4.8 provided a general bound of the form T (d+ 1; d) � 4d+ 1, whihopened the possibility of proving many interesting results in disrete and ompu-tational geometry.HALVING HYPERPLANES AND THE k -SET PROBLEMThe number hd(n) of halving hyperplanes of a set of size n in Rd, i.e., the number ofessentially distint plaements of a hyperplane that split the set in half, aordingto B�ar�any, F�uredi, and Lov�asz (see [B�ar93℄), satis�eshd(n) = O(nd��d); where �d = T (d+ 1; d)�(d+1):POINT SELECTIONS AND WEAK �-NETSThe equivalene of the following statements was established in [ABFK92℄ beforeTheorem 14.4.8 was proved. Considerable progress has sine been made in thisarea [Mat02℄, and di�erent ombinatorial tehniques for proving these statementshave emerged in the meantime.� Weak olored Tverberg theorem: T (d+ 1; d) is �nite.� Point seletion theorem: There exists a onstant s = sd, whose value de-pends on the bound for T (d+1; d), suh that any family H of (d+1)-elementsubsets of a set X � Rd of size jHj = p� jXjd+1� ontains a piereable subfam-ily H0 suh that jH0j � ps� jXjd+1�. (H0 is piereable if TS2H0 onv S 6= ;.A �d B if A � 1(d)B + 2(d), where 1(d) > 0 and 2(d) are onstantsdepending only on the dimension d.)� Weak �-net theorem: For any X � Rd there exists a weak �-net F for onvexsets with jF j �d �(d+1)(1�1=s), where s = sd is as above. (See Chapter 36 forthe notion of �-net; a weak �-net is similar, exept that it need not be partof X .)� Hitting set theorem: For every � > 0 and every X � Rd there exists a setE � Rd that misses at most �� jXjd+1� simplies of X and has size jEj �d �1�sd ,where sd is as above.OTHER RELATED RESULTSA topologial on�guration spae that arises via the CS/TM-sheme in proofs ofTheorems 14.4.8 and 14.4.10 is the so-alled hessboard omplex �r;t, whih owesits name to the fat that it an be desribed as the omplex of all nontaking rookplaements on an r � t hessboard. This is an interesting ombinatorial objet



228 R.T. �Zivaljevi�that arises independently as the oset omplex of the symmetri group, as theomplex of partial mathings in a omplete bipartite graph, and as the omplexof all partial injetive funtions. In light of the fat that the high onnetivityof a on�guration spae is a property of entral importane for appliations (f.Theorem 14.5.1), hessboard omplexes have been studied from this point of viewin numerous papers; see [Ath℄ and [Wa01℄ for reent advanes and referenes.14.5 TOOLS FROM EQUIVARIANT TOPOLOGYThe method of equivariant maps is a versatile tool for proving results in disretegeometry and ombinatoris. For many results these are the only proofs available.Equivariant maps are typially enountered at the �nal stage of appliation of theCS/TM-sheme (Setion 14.1).GLOSSARYG-spae X, G-ation: A group G ats on a spae X if eah element of Gis a ontinuous transformation of X and multipliation in G orresponds toomposition of transformations. Formally, a G-ation � is a ontinuous map� : G�X ! X suh that �(g; �(h; x)) = �(gh; x). Then X is alled a G-spaeand �(g; x) is often abbreviated as g � x or gx.Free G-ation: An ation is free if g �x = x for some x 2 X implies g = e, wheree is the unit element in G.G-equivariant map: A map f : X ! Y of two G-spaes X and Y is equivariantif for all g 2 G and x 2 X; f(g � x) = g � f(x).Borsuk-Ulam-type theorem: Any theorem establishing the nonexistene of aG-equivariant map between two G-spaes X and Y .n-onneted spae: A path-onneted and simply onneted spae with trivialhomology in dimensions 1; 2; : : : ; n. A path-onneted spae X is simply on-neted or 1-onneted if every losed loop ! : S1 ! X an be deformed to apoint.The following generalization of the Borsuk-Ulam theorem is the key result usedin proofs of many Tverberg-type statements. Note that if X = Sn; Y = Sn�1,and G = Z2, it speializes to the \odd" form of the Borsuk-Ulam theorem given inSetion 14.2 (following Theorem 14.2.2).THEOREM 14.5.1Suppose X and Y are simpliial (more generally CW) omplexes equipped with thefree ation of a �nite group G, and that X is m-onneted, where m = dim Y .Then there does not exist a G-equivariant map f : X ! Y .Theorem 14.5.1 is strong enough for the majority of appliations. Nevertheless,in some ases more sophistiated tools are needed. A topologial index theory is aomplexity theory for G-spaes that allows us to onlude that there does not exista G-equivariant map f : X ! Y if the G-spae Y is of larger omplexity than theG-spae X . A measure of omplexity of a given G-spae is the so-alled equivariant



Chapter 14: Topologial methods 229index IndG(X). In general, an index funtion is de�ned on a lass of G-spaes,say all �nite G-CW omplexes, and takes values in a suitable partially ordered set
. For example if G = Z2, an index funtion IndZ2(X) is de�ned as the minimuminteger n suh that there exists a Z2-equivariant map f : X ! Sn. In this ase
 := N is the poset of nonnegative integers. Note that the Borsuk-Ulam theoremsimply states that IndZ2(Sn) = n.PROPOSITION 14.5.2 [Mata, �Ziv98℄For eah nontrivial �nite group G, there exists an integer-valued index funtionIndG(�) de�ned on the lass of �nite, G-simpliial omplexes suh that(i) If IndG(X) > IndG(X), then a G-equivariant map f : X ! Y does not exist.(ii) If X is (n�1)-onneted then IndG(X) � n.(iii) If X is an n-dimensional, free G-omplex then IndG(X) � n.(iv) IndG(X � Y ) � IndG(X) + IndG(Y ) + 1, where X � Y is the join of spaes.It is lear that the omputation or good estimates of the omplexity indiesIndG(X) are essential for appliations. Oasionally this an be done even if thedetails of onstrution of the index funtion are not known. Suh a tool for �ndingthe lower bounds for an index funtion desribed in Proposition 14.5.2 is providedby the following inequality.PROPOSITION 14.5.3 Sarkaria inequality [Mata, �Ziv98℄Let L be a free G-omplex and L0 � L a G-invariant, simpliial subomplex. Let�(LnL0) be the order omplex (f. Chapter 21) of the omplementary poset LnL0.Then IndG(L0) � IndG(L)� IndG(�(L n L0))� 1:In some appliations it is more natural, and sometimes essential, to use moresophistiated partially ordered sets of G-degrees of omplexity. A notable exampleis the ideal valued index theory of S. Husseini and E. Fadell [FH88℄, whih proveduseful in establishing the existene of equilibrium points in inomplete markets(mathematial eonomis).14.6 SOURCES AND RELATED MATERIALFURTHER READINGThe reader will �nd additional information about appliations of topologial meth-ods in disrete geometry and ombinatoris, as well as a more omprehensive bib-liography, in the survey papers [Alo88, B�ar93, Bj�o95, Ek93, Ste85, �Ziv98℄ as wellas in the books [Mat02, Mata℄.The reader interested in broader aspets of the topology/omputer siene in-teration is direted to the following soures:



230 R.T. �Zivaljevi�(1) Both [BEA+99℄ and [DEG99℄, surveys of existing appliations, may also beseen as programs o�ering an insight into future researh in omputationaltopology, identifying some of the most important general researh themes inthis �eld.(2) The home page of the BioGeometry projet, [BioG℄, also inludes informa-tion (�-shapes, topologial persistene, et.) about the topologial aspets ofthe problem of designing omputational tehniques and paradigms for repre-senting, storing, searhing, simulating, analyzing, and visualizing biologialstrutures.(3) The CompuTop.org Software Arhive (maintained by Nathan Dun�eld) is fo-used on software for low-dimensional topologial omputations [Dun℄.(4) The Lisp omputer program Kenzo [Ser℄ exempli�es the powerful omputa-tional tehniques now available in e�etive algebrai topology.(5) For general information about algebrai topology the reader may �nd theWeb site [WD℄ of the Hopf Arhive and the assoiated Topology disussiongroup (C. Wilkerson, D. Davis) extremely useful.RELATED CHAPTERSChapter 1: Finite point on�gurationsChapter 4: Helly-type theorems and geometri transversalsChapter 32: Computational topologyChapter 63: Biologial appliations of omputational topologyREFERENCES[Alo88℄ N. Alon. Some reent ombinatorial appliations of Borsuk-type theorems. In M.M.Deza, P. Frankl, and D.G. Rosenberg, editors, Algebrai, Extremal, and Metri Com-binatoris, pages 1{12. Cambridge University Press, 1988.[ABFK92℄ N. Alon, I. B�ar�any, Z. F�uredi, and D. Kleitman. Point seletions and weak �-nets foronvex hulls. Combin. Probab. Comput., 1:189-200, 1992.[AET00℄ N. Amenta, D. Eppstein, and S-H. Teng. Regression depth and enter points. DisreteComput. Geom., 23:305{329, 2000.[ATCS℄ Proeedings of the Conferene on Algebrai Topologial Methods in Computer Siene,2001. G. Carlsson, editor. Homology Homotopy Appl., to appear.[Ath℄ C. Athanasiadis. Deompositions and onnetivity of mathing and hessboard om-plexes. Preprint.[B�ar93℄ I. B�ar�any. Geometri and ombinatorial appliations of Borsuk's theorem. In J. Pah,editor, New Trends in Disrete and Computational Geometry, Volume 10 of AlgorithmsCombin. Springer-Verlag, Berlin, 1993.[BM01℄ I. B�ar�any and J. Matou�sek. Simultaneous partitions of measures by k-fans, DisreteComput. Geom., 25:317{334, 2001.
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